Menú
Programa

Series Temporales

¿QUIERES SOLICITAR INFORMACIÓN?
CONCEPTOS
CLAVE
1
CARACTERÍSTICAS DE UNA SERIE TEMPORAL
2
DEFINICIÓN DE SERIES ESTACIONARIAS
3
ANÁLISIS ESTADÍSTICO DE LA SERIE
4
MODELOS ARMA Y ARIMA
5
MODELOS ESTACIONALES
6
DIAGNOSIS Y METODOLOGÍA BOX-JENKINS
7
PREDICCIONES
Matrícula
Categoría:

Tecnología de la Información

Modalidad:Online
Edición:V
Inicio: 24/01/2022
Fin Preinscripción: 24/01/2022
Precio: 390€ (-50% DTO. BLACK FRIDAY)
Matricúlate ahora
Descripción

Una serie temporal es un conjunto de observaciones de una variable de interés (evolución de precios, evolución diaria del IBEX-35, etc.) cuya evolución se sigue a lo largo del tiempo en intervalos regulares (días, meses o años).

El objetivo principal es explicar la evolución de la serie a lo largo del tiempo y pronosticar sus valores futuros. Las variables/series pueden ser económicas, financieras o de otros tipos, ya que la técnica de series temporales se utiliza en muchas disciplinas. 

Información

Objetivos

  • Usar los principales paquetes estadísticos que proporciona R-Project/R-Studio en Series Temporales.

  • Conocer las características de una serie temporal.

  • Utilizar los modelos ARMA, ARIMA y Modelos Estacionales.

  • Hacer predicciones una vez ajustado los modelos.

Datos del programa

Duración:  Del 24 de enero al 11 de febrero. El curso tiene una duración de 30 horas lectivas.

Modalidad: El curso se imparte en modalidad 100% online, combinando clases en directo, donde podrás interactuar con el profesor y tus compañeros, y videoconferencias. También tendrás a tu disposición las grabaciones en CANVAS, nuestro campus virtual.

Curso bonificable por FUNDAE.

Sede: Edificio ENAE. Campus Universitario de Espinardo 30100 Espinardo Murcia.

PROFESORES

MÓDULOS

En todos los negocios y áreas de estudio el análisis temporal es un elemento fundamental. Ya sea para estudiar tendencias, comparar distintos momentos en el tiempo o, cada vez con mayor frecuencia, predecir el comportamiento futuro de una variable.

En este módulo se estudiarán:

  • Descomposición de series temporales
  • Uso de regresores externos
  • Principales modelos:
    • ARIMA
    • alisado exponencial
    • redes neuronales
    • random forest
    • híbridos
CARACTERÍSTICAS DE UNA SERIE TEMPORAL
  • Periodicidad
  • Tendencia
  • Volatilidad-Varianza
  • Ciclo Estacional
  • Descomposición de una serie temporal
  • Ejemplos y Ejercicios en R
     
DEFINICIÓN DE SERIES ESTACIONARIAS
  • Eliminación de la tendencia
  • Transformación para la homocedasticidad
  • Eliminación para el ciclo estacional
     
ANÁLISIS ESTADÍSTICO DE LA SERIE
  • Función de Autocorrelación Simple (FAS)
  • Función de Autocorrelación Parcial (FAP)
  • Series Estacionarias en la FAS y la FAP
  • Ejemplos y Ejercicios en R
     
PROG-BE-SERIES-TEMP-V
CAPTCHA
Esta pregunta se hace para comprobar que usted es una persona real e impedir el envío de spam.
3 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
A lo largo de nuestros más de 25 años de vida,
más de 13.000 alumnos han confiado
en la excelencia y la calidad de la formación de ENAE Business School.
Matricúlate ahora

COMPÁRTELO